Validation of an algorithm for left ventricular segmentation in 150 patients shows potential for further development towards fully automatic segmentation
نویسندگان
چکیده
Background Automatic segmentation of the left ventricle (LV) is desirable to assess the cardiac parameters end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF) and left ventricular mass (LVM) since manual segmentation is time consuming and observer dependent. A physiologically correct segmentation of the left ventricle requires careful consideration of the long axis displacement and the LV outflow tract which makes the myocardium non-circumferential in the basal slices. To detect the long axis displacement a constraint could be used to keep the LVM fairly constant over the cardiac cycle. However, in order to use this constraint, the error of the segmentation has to be low regarding both endocardial and epicardial borders in the non-basal part of the LV. Therefore, the purpose of this study was to improve and validate an automatic algorithm for LV segmentation in the non-basal part of the LV, as a first step towards fully automatic segmentation.
منابع مشابه
Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملA Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures
Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...
متن کاملSegmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network
Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...
متن کاملSegmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network
Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کامل